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3 ABSTRACT

;JPeriodic solutions are investigated of the set of second order
Hamiltonian equations =-X%X = V'(x) for x(t) e iﬁ, where the function V is
even, has a certain monotonic behaviour on rays through the origin in Sy and
has superquadratic growth at infinity. It is proven that for T > 0 less
than the smallest period of the linearized system (if non-trivial, else for
all T), there exists a periodic solution of a special kind, a normal mode,
which has minimal period T, has large amplitude (tending to infinity as
T 4+ 0) and which minimizes the action functional on a naturally constrained
set. If V has a direction of maximum increase this solution will be
characterized completely. ,

A condition for V -uékiibe given, which is the same as in a multiplicity

regult for the prescribed energy case, that provides the existence of at

le&st N distinct normal modes of minimal period T.
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SIGNIFICANCE AND EXPLANATION

In this paper we look for a special kind of periodic solutions x(t) & ol
of the system of second order Hamiltonian equations =% = V'(x). Assuming the
) potential V to be even and having sufficiently rapid and monotonic growth on
rays through the origin in ﬂp, it is shown that for some, physically
interpretable, T* e (0,®] there exists for every T € (0,T*) a solution
with minimal period T. Such solutions have large amplitude, tending to
infinity as T + 0. Furthermore, although the action functional is not

bounded from below or above on the set of T-periodic functions, we shall

construct a naturally constrained subset such that the action functional
attains its, finite, minimum value on this subset at such a solution with
minimal period. This extremal characterization of these solutions may be

useful for numerical calculations.

Under a specific condition for V it will be show that there exist at

least N distinct normal modes with minimal period T.
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ON SMALL PERIOD, LARGE AMPLITUDE NORMAL MODES
OF NATURAL HAMILTONIAN SYSTEMS

E. W. C. van Groesen*
1. INTRODUCTION
In this paper we shall consider periodic motions of a system described by a set of
second order autonomous equations

=% = v'(x)

for the N-vector function x(t), where V is a potential energy function defined on
. The system described by (1) is a Hamiltonian system for which the Hamiltonian
H(x,p) =Vap'p + VIx), (x,p) eR x R,

being the sum of kinetic energy and potential energy, is a so called natural Hamiltonian.

Our investigation of (1) will concentrate on finding and characterizing periodic
solutions which have an (arbitrarily) prescribed value of the period. More specifically,
we shall assume that V satisfies the following condition
(Vo) ve Cz(lp,n), V(0) = 0 and V is even: V(x) = V(~x) for x e B .
The evenness assumption implies that it is possible, as we shall do, to look for a special
kind of periodic solutions, to be called normal modes (see [9] and the references therein
for a motivation of this terminology). These are periodic solutions of (1) for which the
trajectory in B is a symmetric curve through the origin along which the motion
oscillates back and forth between the two erdpoints of the curve, which are rest points for
the motion. These normal modes are completely characterized by a solution of a boundary
value problem (see e.g. [6]). In fact, let x be for some A > 0 a solution of

-% = AV'(x), te (o,

(2)
x(0) = %(1) =0 ,

and define a continuation map C as
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- x(t) for t e [0,1]
(3) Cx(t) := odd continuation of the function x(t) =

x(2 -¢t) for t e [1,2) .
Then the normal mode corresponding to a solution x of (2) is given by the function
(4 x(t) = Cx(t//) ,

which is easily verified to be a smooth solution of (1) on all of R which has period

T= 4/:. Note that this normal mode will have T as its minimal perjod iff the solutijon

of (2) satisfies x(t) # 0 for t & (0,1).
Simple examples show that without further conditions on V no periodic solution with

arbitrary period will exist in general. Therefore consider the following (super quadratic)

growth condition:
(Vi) There exist numbers u > 2 and R > & such that
Vi(x)ex > uV(x) >0 for all xe R, |x|>R.
Requiring only condition (V1), Rabinowitz {13] (see also (13, 15]) showed that for any
T>0 and any A > 0 there exists a solution of (1) which is periodic with period T and

which has sup norm larger than A. A simplified proof of this result for even or convex

potentials is contained in [8]. 1In hoth cases nothing can be said about the minimal period

of such a solution.

In this paper we shall require an additional condition which is essentially a
monotonicity condition for the growth of V on all of any ray through the origin:
(v2) V(x) > 0 and V*(x)exex - V'(x)ex > 0 for all x € R\ {0} .
Assuming (V0)~-(V2) to be satisfied it will be shown in section 2 that for any T > 0 1less
than the smallest non-trivial period of the linearized system (if non-trivial, else for

all T) there exists a normal mode X which has minimal period T, and that

|;T|co +® as T * 0.
In (14] and [B] the periodic solutions were found using topological minji-max methods

for the action functional on the set of T-periodic functions in {(14]) and on certain

naturally constrained subsets in {8]. Here we shall show that it is possible to define a

a

naturally constrained set Nq such that the normal modes KT are characterized as the
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elements for which the action functional is minimized on this set NT. For the solution of

the boundary value problem (2) with A = (T/4)2 which defines this normal mode via (4)

this naturally constrained minimization problem reads

1 1
(s) inf{f {% 2wl s x7 o, x(0) =0, [ (% - Avix)ex} = 0} .
0 0

In section 3 we shall consider potentials V which have a direction of maximum increase,
i.e. for which there exists a vector e € SN-1. the unit sphere in RN, such that on each
sphere with radius r > 0, V attains its maximum value at the point re. Por such
potentialsg, which include the class of similarity, and in particular, homogeneous
potentials, it is shown that the solution of the naturally constrained minimization problem
{5) provides a similar normal mode, i.e. a normal mode which has a trajectory that lies on
the ray through the origin in the direction e.

In section 4 we shall consider some multiplicity results for normal modes with minimal
period T. For any similarity potential the existence of N similar normal modes in
different directions of "stationary"™ increase of V will be proven. In case V is not a
similarity potential, a condition will be given that guarantees the existence of at least
N distinct normal modes with minimal period T. This condition, unlike (V1), (V2), which
are conditions on the growth of V on rays through the origin, is a condition on the
geometry of the level sets of V. A condition of this kind has been used by Ekeland and
Lasry [S5] to prove the existence of at least N distinct periodic solutions of the same
prescribed energy (instead of prescribed period) and precisely the same condition provides
the existence of at least N normal modes of (1) with prescribed energy, see [7), or with
prescribed normalized potential energy (i.e. f1 V(x)), see (9]. The result to be -
obtained in section 4, theorem 4.3, seems to b: the first multiplicity result for solutions

with minimal period for superquadratic potentials (for the subquadratic case, see

{t, 3, 81).




2. THE NATURALLY CONSTRAINED MINIMIZATION PROBLEM

In this section the naturally constrained minimization problem will be introduced in a
precise way and is used to obtain the existence of normal modes of prescribed, small,
minimal period.

We start to introduce some notation and recall some standard results that are needed
further on. Let Hy := H1([0.1],IP) be the Sobolev space of N-vector functions
x : [0,1] *+ IP which are, together with their generalized first derivative, square
integrable. H; is a Hilbert space which is continuously embedded in the set
Co 3= co([0,1],!P) of continuous vector function. Therefore, the set

E := {x €H, : x(0) = 0}
is neatly defined and, being a subspace, E is a Hilbert space itself. Since

«2 n
(2.1) #5312,
where here and in the following, f denotes integration with respect to t over (0,1),
271
we can, and shall, take 1 f defined by Ixf ;= {f x } /2 as a norm on E (equivalent to
the usual Hy-norm). with | | o the norm of c®, Ix! = max |x(t)|, we also have
c Cc te[o,1])
(2.2) Ix| g ¢ 1x1 for all xeE .
[
0

Moreover, E is compactly embedded in C : any sequence {xn} C E with |xnl uniformly
bounded, has a subsequence {xn,} which converges weakly in E and strongly in cl.
For any A > 0 define the functional Wx on E by
¥, (x) 1= f {% iz - aw(x)}, xeE.

Note that Ox is well defined, is not bounded from above and is twice differentiable (if
vec(®)) on E. The first result states that looking for critical points of wx on
£ is a variational formulation of the problem of finding solutions of (2), but that, in
the case we are considering, any non-trivial solution of (2) is not simply a (local)

minimum of *k on E.
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Proposition 2.1.

Assume V € CZ(IN) and let X > 0. Then any function x € E 1is a classical solution
of the boundary value problem (2) iff x is a critical point of wx on E. PFurthermore,
if V satisfies (V1) then *x is not bounded from below on E and if V satisfies (Vv2)
then any non-zero critical point of *x is not a local minimum of wx on E.

Proof: The first statement is a standard result from the classical calculus of

variations. Note in particular that the condition (1) = 0 results as a natural boundary

condition from the variational formulation. Next, let S denote the unit sphere in
E:8:={xeE : Ixl =1}, and consider for fixed y € S the function g : R, * R

defined by

(2.4) g(p) := Wx(py), e >0 .

We shall show that as a consequence of (V1), gf{p) » -« as p + ®, which implies that
Vx is not bounded from below on E. To that end, observe that by integrating the
inequality in (V1) it follows that for some constants a > 0 and b < 0:

vix) > a‘x|u + b for all x € RN .

Therefore

oy) =202 <3 [ vy < 2o agt [yl - b,
and, since v > 2, the result follows. Finally, consider the second variation of OA
at x in the direction £ € E, given by
0, txi€) = [ {2 < avr(Eeg) .

Then, for x Z 0, condition (V2) immediately implies that Qx(x;ex) is negative for all
e € R\{0} if x 1is a solution of (2), which shows that x is not a local minimum of
¢X on E. -

From now on we shall assume that V satisfies (V0)-(V2). In order to explain the
introduction of the natural constraint NA below, consider for fixed y € § the
function g defined by (2.4). The behaviour of g at 0 and at « is known and
independent of y €S and X > 0
(2.5) g(0) = 0 and qg(p) + ~» as p + ® ,

but for finite values of p the behaviour of g depends on the detailed behaviour of V

-5




and on the choice of y € S and 1 > 0. However, condition (V2) implies another global

property of g, independent of y €S and of X Af ) > 0 is gufficiently small. To
investigate this, consider the first and second derivative of g. At any critical point

; >0 of g, q'(;) = 0, the second derivative is given by

g"(0) = 22 | (V' (py)epy = V*(py)oyepy)

HBence 9'(;) < 0 because of (V2), which implies that if g has a critical point ; >0,
then ; is the unique positive critical point of g and g attains its global maximum at
;- We shall now show that for X > 0 gufficiently small and any y € S, g has indeed a
positive critical point. Given (2.5), it suffices to show that there exists A* > 0 such

that for any ) & (0, A*) g is positive for p > 0 sufficiently small. Since g € c2,

with g(0) = g*'(0) = 0, this will be the case if g"(0) > 0. Define

m
o

- if vt (0)
(2.6) ™ 1= 4/ AT , and A% ;=

(%)%“' if V" (0) ¥ O,
wvhere © is the largest (positive) eigenvalue of V"(0), Note that, in case V"(0) ¥ O,
T* is the smallest (non-trivial) period of the solutions of the linearized system

-% = V" (0)x .
Using inequality (2.1) in the expression for g"(0), it follows that
g (0) = ) {32 = Av"(0)yey} > | {(-:,-)21N = AV (0)}ysy > 0 for X e (0,A%)

vhere I, is the identity matrix in /. Hence, for X e (0,A*), g has for any y € S
a unique, positive critical point at which g is maximal.

Now define the set Nx as

o2
(2.7} N :=lxeE:x70, J X" = A [ vixiex} .
In view of the foregoing, for ) e (0,\*), NX can also be described as
(2.8) NX = {oy : y €S, p is the unique solution of max wx(py)) .
n>0

By taking the Lj-innerproduct of the equation in {2) with the function x, it is clear
that any non-trivial critical point of wx on E Dbelongs to Nx. The next result states

that it is also true that any critical point of the restriction of wx to NA is a

-6~




critical point of ¢ on E. (For a special class of scalar equations, a constraint like
{(2.7) has been used for the first time by Nehari (11)).
Propogition 2.2.

Let V satisfy (Vo)-(vz) and let X € (0,A*), where A* {3 defined in (2.6). Then
the set NX given by (2.7) is a smooth, symmetric manifold in E which has codimension

1. Moreover, N\ is a natural constraint for the functional *A on E, i.e. any

critical point of the restriction of Wx to NX is a solution of the boundary value
problem (2).

Proof: Define a functional ¢X on E by

(2.9) 8300 1= [ (F2 = Avi(oyext L

Then ¢, is differentiable on E and the set N, is given by
by A

NA = {x ek : $)(x) = o\ {o0}. For x € N, it is readily seen that
<¢i(x),x> =X f {v'(x)ex - V"(x)x*x} < 0, from which it follows that ¢i(x) # 0. Hence,
at every x € ~X' the tangent space to NA at x has codimension 1. Next we show that
x £ 0 is an isolated point of the set {x € E : ¢(x; = 0}, which will imply that Nx is
smooth. To that end, let m > 0 be any number if V"(0) = 0, and let m > o0 if o is
the largest eigenvalue of V"(0) Z 0. Then there exists a p > 0, depending only on m,
such that
V'(x)ex € mx? for all x e RV, x| <o,
and p(m) * 0 ags m + 0. With inequalities (2.1) and (2.2), it follows that if x € NX
and Ixf < p, then
(%)2 / x% < / %2 =2 J viixyex € am | x2
so that x € Nx must satisfy UIxk > p if A « (%]2-m-1. In case V"(0) Z 0, p »+ 0 as
A+ )*, bur, for future reference, note that for any £ > 0 there exists a number Py
such that
(2.10) an {xeE : Ixh < po} =g for X € (0,A* - €] .
Pinally, to show that NA is a natural constraint, the multiplier rule states that a

eritical point x of ¢, on Nx satisfies for some number v € R the equation

~% - Av'(x) = v{-2% ~ AV'{x) - AV"(x)x} .

-7~




and the boundary condition x(0) = x(1) = 0. Multiplying this equation by x and

integrating over (0,1) readily shows that V = 0 because x € NA and VvV sgatisfies
{V2). Hence, any critical point of wx on NX satisfies (2), which completes the proof. ®

We are now in a position to define for given ) > 0 the naturally constrained

minimization problem, the value of which will be denoted by c(i):

(2.11) ctd) = infl¥, (x) : x e N} .
Remark 2.3.
In view of the characterization (2.8) for NX’ it is easily seen that for
A e (0,A*) (2.11) is an explicit minimization formulation a mini-max problem for wx
on all of E:
(2,12} c{iA) = inf max wx(py) .
yes o>0
This clearly demonstrates the role of the natural constraint NA in characterizing some of
the critical point of wx which are of saddle point type on E as constrained minima for
*X on N&. -
Proposition 2.4.
Let V satisfy (V0)-(V2) and let X* Dbe defined as in (2.6). Then c()) is finite
and positive for all X e (0,A*) and c is monotonically decreasing on (0,A*).
Furthermore, for each ) € (0, A*), the minimization problem {(2.11) has a solution X
and Ixxlco +® ag X+ 0.
Moreover, any minimizing sequence for (2.11) has a subsequence which converges in
f f-norm, and hence uniformly on [0,1], to a solution of (2.11). L]
Before giving its proof, let us use proposition 2.4 to obtain the existence of small
period, large amplitude normal modes for equation (1).
Theorem 2.5.
Let V satisfy (V0)-(V2) and let T* be given by (2.6). Then, for any T € (0,T*)

-

equation (1) has a solution x,P which is a normal mode with minimal period T. Moreover,

-

|xT| o™ as T * 0, and X, corresponds via the transformation (4) to a solution x,

T
of the naturally constrained minimizatfon problem (2.11) for X = (T/d)z.

-8-
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Proof. Let Xn derote¢ tlc rormal mode which corresponds via the transformatiorn (4, to a H

solution xy  of (2.11). Since fxT( 0 = ’xx' o+ it only remains to be shown that x
C C

has minimal period. Therefore, suppose that * is any solution of (2, for which the

T

corresponding normal mode does not have minimal period. Then there exists some integyer
k e@N, kX2 3 and k 1is odd, such that the function y defined by y(t) := x(t/k,,
t e [0,1], satisfies y(0) = $(1) = 0 (because k is odd) and the eguation in (2) with

A replaced by )\/k?. Hence y e N and by the definition of the function

A/x? -
c : C(X/kz) <y 2(y)- As is easily seen V¥ z(y) = 13 Wx(x), from which it follows
A/k A/k Kk
that
2 1 ~ :
(2.13) c(i/k°) € -E'wx(x) . |

k

Consequently, if X were a solution of the minimization problem (2.11), it would fcllow

that C(X/kz) < 15 c()), in contradiction with the fact that the function ¢ is

k -
monotonically decreasing. This shows that XT has minimal period T. n

Proof of Proposition 2.4.

On the set NA the functional WA cen be written as
(2.14) Uy ) = A [ wix)
where W(x) = % V'(x)ex - V{x). Because of condition (V2 , W satisfies W'{x)sx > 0
which implies that for any x # 0 the function p —> W(px) is monotonically increasing }
for p > 0, and hence W(x) > W(0) = 0 for x # 0. This shows that c(l) » 0. That
c(h) > 0 follows as soon as the existence of a solution has been proved because 0 € Nx.

To show that ¢ 1is monotone, let 0 < X1 < AZ < A*, and let x1(7 0) Ye a solution of

(2.11) for A\ = x,. Then x, € NX and for some p # 1, o > 0, px, e Nx . Because of
4 o

P

(2.8) it follows that WA (ox,) < wA (x’). Since WA (x) > WX (x) for all x # 0, the
1 1 1 2
result follows easily: c(k1) = WA1(x1) > wx1(ox1) > wxz(px1) > c(Xz). Next, let X, be a

solution of (2.11). To show that !x + ® ag X * 0, suppose, on the contrary, that

3
At

[xxl ¢ 18 uniformly bounded. Then / V'(XX)‘XX is uniformly bounded and since x, € Ny,
C

it follows that lxxl + 0 as XA + 0, contradicting property (2.10).

-9-




It remains to prove the existence of a solution of (2.11). Pirst observe that as a

consequence of condition (V1), for some a € R
(2.18) b, (0 > {-;- 22 - %V'(x)-x} tae (-2‘- - ul) [ %2+ 2 for xe y -
Now, let {xn} be any minimizing sequence, i.e. x, e Ak for all n e W and
*X(xn) +c(l) as n+ =®, Since 4 > 2, it follows from (2.15) that Ixnl is uniformly
bounded. Hence, some subsequence, again to be denoted by (xn), converges weakly in E
ana in % to some ; € E. We shall show that ; is a solution of the minimization
problem (2.11).
Since the norm functional is lower semicontinuous with respect to weak convergence,
l;l < 1lim inf Ixnl, and since (xn} converges in ¥, J V(xn) -] V(;) and
J Vilx Jex + | Vi(x)ex as n > e. Consequently vx(;) S c) = lm ¥, (x ) and
.X(;) € 0 where ‘X is defined by (2.9). We shall show that ; ¥ 0 and that
‘X(;) = 0, 4{.e. that ; e NA' Indeed, that ; # 0 follows since x, e Nx and x, + 0
in ¢ would imply lxnl + 0, contradicting the fact that 0 is an isolated point of
A&. Furthermore, if 0(;) < 0, then there exists a p > 0 such that O(D;) =0, and in
fact p < 1 because of the behaviour of the function o +H—> WX(OX)' Then, by (2.14) and
the monotonicity of W:
¥, (0x) = 2 [ W (ox) <A J W(x) = Lim X [ WOx ) = lim ¥, (x ) = cOh)
whereas, by definition of c(}): *A‘p;) > ¢{)). This contradiction implies that
#(x) = 0. From this it follows that Ix I » Ixl, which, together with the fact that

-

X, converges weakly to X, implies that x, converges strongly in E: Ixn - xl + 0 as

n + », From these results, it is immediate that x is a solution of (2.11) since

wx(xn) *> Ox(x) as n + ® and thus Wx(x) = c(A). This completes the proof.




.

3. SIMILAR NORMAL MODE

The simplest normal modes are those of which the trajectory in &Y is on a straight
line through the origin. Such periodic solutions are called similar normal modes (cf.
[16)). Stated in another way, a similar normal mode in the direction
ee s’ s {eer: lef = 11 is related via (4) to a solution x of the boundary value
problem (2) which is of the form
(3.1) x(t) = alt)e ,
where a(t) is a scalar function. In order that (3.1) is a solution of (2), the vector
e has to satisfy
(3.2) V'(ae) = (V'(ae)re)e
and o has to be a solution of the scalar equation
(3.3, -4 = AV'(aej*e, a(0) = &(1) =0 .

Note that the corresponding normal mode has minimal period iff 4&(t) £ 0 for t € (0,1),
i.e. iff a is monotonically increasing (or decreasing) on [0,1].
For general potential V there will he no direction e € SN-1 such that (3.2) is
satisfied for all a > 0. If V happens to have such a direction, as is for instance the
case if V is a similarity potential (see section 4), conditiong (V0)=-(V2) will guarantee

that (3.3) has a solution, as we shall see.

Definition 3.1%.

V is said to have a direction of gtationary increase e € SN'1 if for each r > 0,

re is a critical point of the function V on the sphere rSN-‘. V is said to have a

direction of maximal increase e € SN"1 if for each r > 0:
(3.4) Vire) = max Vix) . [
xersh~1

As is easily verified, V has a direction of stationary increase e @ s“" iff (3.2) is
satisifed for all a > 0, and if e is a direction of maximal jincrease, then e is a

direction of stationary increase.

Por e e sN' consider the set g = {a : {0,1] » R : ae € E}, which is nothing but

the usual space of scalar Hy-functions a with a(0) = 0. 1In a natural way, the
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restriction of the functional wx and the set NX to functions ae € E leads to the

functional
1
(3.5) wx'e(a) : wx(ae), a€eE
and to the set
1
(3.6) Nx'e i={aekr :aee N} .
We shall consider the minimization problem
(3.7) 1an)"e(n) 1 a € NX,e} .
This minimization problem is for N = 1 of the form considered in section 2, (2.11), with
a potential Ve defined by
(3.8) v;(a) := V(ae), a € R,
and the results of that section may be applied.
Proposition 3.2.
Let V satisfy (V0)-(V2) and let T* be defined by (2.6). If e e s~ ' is any
direction of stationary increase for V, then for every T € (0,T*) there exists a

-

similar normal mode Xp in the direction e which has minimal period T, and

|;T| 0 + ® ag T * 0. This similar normal mode is related via (4) to a solution x) of
(2), Shere X, = aye and ay is a solution of the minimization problem (3.7) for

A= (T/4)2,
Proof. We investigate the minimization problem (3.7). Since V_ (a) = V'(ae):e and

V:(a) = V*(ae}e‘e, it is eagily verified that the potential V, satisfies conditions

(V0)-(V2) because V does. Next we define the values A* and T* for problem (3.7):
" =
@ if Ve(O) 0

(P2vzon™ ie vio) o

Since v:(O) = V"(0)e*e, it is clear that x; > A*, Consequently, for any

Te (o,T) C (O.T;) we can apply the results of proposition 2.4 and theorem 2.5 for the
special case N = 1 and potential V.. In this way we find a solution a, of (3.7) to
which there corresponds a normal mode with minimal period T. Since a, satisfies the

boundary value problem (2) for V.. oy is a solution of (3.3). Since e 1is a direction
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of atationary increase, (3.2) is satisfied, so that axe defines via the transformation

(4) a normal mode Xn in the direction e with minimal period T. Moreover, since

'“x'co +® ag X+ 0, it foilows that lelco +

® as T * 0. L
Remark 3.3.

The result of proposition 3.2 can also be stated as follows: If e is a direction of
stationary increase for V, the functional wx attains its finite, minimum value on the
get f{ae e Nl ;ae E’), which set is a natural constraint for the functional ¥, . L

The next result characterizes the solution set of the naturally constrained
minimization problem (2.,11) in case V has a direction of maximal increase.

Proposition 3.4.

lLet V satisfy (V0)-(V2) and let X €@ (0,A*) where \A* is given by (2.6). Assume,

moreover, that V has a direction of maximal increase. Then the solution set of the

minimization problem (2.11) consists of all the functions X = ae where e is any

direction of maximal increase and ay is any solution of (3.7).

N-1 be a direction of maximal increase and let x be a solution of

Proof: Let eé€s
(2.11). We consider the "normalized” radial projection p of x onto the direction

e : plt) := plxlt)]e, where p > 0 is choosen in such a way that p € Nx. Then

P = o(%i?)e and | 52 < 0? f %2 with equality only if x(t) and x(t} are parallel for

all t e (0,1], 4i.e. only if x(t) = B(t); for some ; e SN-1 and some scalar function

B. Since e 1is a direction of maximal increase, it holds V{p(t)) > Vipx(t)), so that

hp) < 302 [ 3 =% [ viex) = v, (0x) € b (x)

where the last inequality follows since x € NX and because of the characterization (2.8),

which also shows that it is an equality iff p = 1. Since x 1is a solution of (2.11), and

pe NX we also have ¢A(x) < Wx(p). Therefore it follows that p = 1, that

x(t) = [x(t)|e and that V({x(t)|e) = v(|x(t)}]e). This shows that e must be a direction !

of maximal increase for V, and the result of the proposition follows easily. .
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4. MULTIPLE NORMAL MODES WITH GIVEN MINIMAL PERIOD.

This section deals with two different multiplicity results. The first result is for
the special class of potentials for which Aifferent level seta are simply radial homotetic
transformations of each other. These potentials, to be called similarity potentials, are
of the form
(4.1) U(x) = P(3(x))
where F is a function defined on R and j : . R, is the gauge of some domain
pC B, More precisely, D is any simply connected bounded domain in 2 wvith the origin
in its interior and with smooth (cz) boundary dD. Moreover, D is strictly starshaped
with respect to the origin, i.e. any ray issuing from the origin intersects the boundary

3D in precisely one point, and at the point of intersection the normal to 3D is not
perpendicular to the ray. Then the gauge 3j of D (the Minkowsky function) is defined as
3(x) := inf{2 > 0 : x e AD}, xen¥,
ana j e (W™ (0},R,), 3(x) =1 iff x €3D. Since 3 is homogeneous of degree 1, it
follows that J'(x)ex = 4(x) and 3I"(x)x°x = 0 for all x € w. Using this, it is easily
verified that U satisfies condition (V0)=(V2) {f D is a sysmetric set and if P
satisfies the condition (V0)-(V2) for N = 1.

A particular subset of the class of similarity potential consists of the homogeneous

potentials which are of the form (4.1) with F some homogeneous scalar function:

rr) ~ Jz|Yr(1)
of some degres U > 0, Note that conditions (V1)=-(V2) are satisfied iff 1y > 2 and then
v ecia.

The first multiplicity result is as follows
Theorem 4.1.

Let U be a similarity potential which satisfies (V0)-(V2) and let T* be defined by
(2.6). Then, for any T € (0,7*) there exist at least N distinct similar normal modes
with minimal period T; moreover, at least one of them corresponds via the transformation

(4) to a solution of the naturally constrained minimization problem (2.11) for ) = (1/4)2. |




e e A M, et

This result is an immediate consequence of propositions 3.2, 3.4 and the following

lemma.

Lemma 4.2.

Let U be a similarity potential of the form (4.1) with Jj the gauge of a symmetric
domain and F monotonically increasing on R,. Then U has at least N distinct pairs
te;, {i=1,...,8 of directions of stationary increase and at least one pair are directions
of maximal increase.

Proof: Since the gauge j is an even function and C2 on the unit sphere SN-‘, a
standard result from Ljusternik-Schnirelmann theory (see e.g. [12])) provides the existence
of at least N distinct pairs :ei, i=1...,N of critical points of j on SN'1, i.e.
these points satisfy

j'(e) = oge for ¢ = j({e) ,
and j is maximal on s""‘I at least at one pair, say te, : j(e1) = max“_1 j(e).

For every a > 0, U(ae) = F(j(ae)) = F(aj(e)), and U'(ae) = aF??:j(e))j'(e), 80
that U'(ce) = {U'(ae)*e)e for e = tei' i=1,...,N. Hence all the directions tei are
directions of stationary increase. Furthermore, since F is monotonically increasing,

e, are directions of maximal increase:

j(x)} = max F(j(x)) . s

F(3(rey)) = F(rjle,)) = F{ max N-1

x€rSs x€ers
The second multiplicity result of this section deals with potentials that satisfy, besides
conditions (V0)-(V2), an additional condition on the geometry of the level sets. This
condition states that all the level sets of V can be squeezed between two balls centered
at the origin that have a fixed ratio of their radii. It is interesting to note that a
condition of this kind, together with a convexity assumption, has been used by Ekeland and
tasry (S] and in [7) to obtain the existence of at least N distinct periodic solutioms,
or normal modes, which have the same value of the energy (instead of the same period), and
in {9) to obtain the existence of at least N distinct normal modes of the same normalized

potential energy (f v(x)). This condition reads:
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(V3) There exists a function P defined on R which satisfies conditions (V0)-(V2)
for N= t and a constant a € [1,3) such that V satisfies
r(lx]) € v(x) € Plalx|) for all x e & .,
Theorem 4.3.

Suppose V satisfies (V0)=-(V3) and let T* be defined by (2.6). Then, for any
T € (0,T*) there exist at least N distinct normal modes xy of (1) with minimal
period T, and each of these satisfies Ileco +® ag T+ 0,

Proof.

The proof is based on the following observations. For any solution % of (2) for
which the corresponding normal modes does not have minimal pericd T = 4JI, it follows
from the proof of theorem 2.5, in particular from (2,13), that 0A(;) satisfies

#x(;) > 9¢(A/9). Since c is a monotonically decreasing function on (0,A*), the
interval [c()),9()/9)) is non-empty and, consequently, any critical point x of wx on
NA for which

(4.2) ¥y (x) < 9c{)A/9)

defines a normal mode that has minimal period T = 4/%. The existence of infinitely many
distinct critical points of *X on NA will be a consequence of Ljusternik-Schnirelmann
theory and will be proven in part (i) under the assumptions (V0)~-(V2). 1In part (ii) we
show that because of condition (V3) at least N (pairs of) critical points satisfy (4.2),
sach of which has co-nozm tending to infinity as A + 0, which will prove the theorem.

(1) 8Since V 1is even, 01 is an even functional on the symmetric set NA‘ The
presence of this Z,-invariance allows the application of Ljusternik-schnirelmann theory if
a certain compactness condition, the Palais-Smale condition, is verified. Under the
assumptions (V0)-(V2) for V, in particular because ¥, satisfies (2.15) on N,, the
verification of this condition is rather straightforward and we shall omit it here.
Summarizing the result of this theory (see e.g. Berger [2)), let ind(A) denote the genus
of a symmetric, compact set A C Nx, defined as (cf. (4], (10]) 4ind(A) is the smallest
integer X € N!J) {0} for which there exists an odd, continuous wmapping A + Rk\{O), and

ind(A) = » 4{f no such mapping exists. The Ljusternik-Schnirelmann theory then gives the
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following result: If T is a symmetric, compact set of N\ with ind(f) = n € B and if

b 2 wx(t), then there exist at least n pairs of distinct critical points !xi'
i=1...,n, of vx on Nx which have critical value < b.
Since NX has subsets of arbitrary large index, this shows that for any

A e (0,A*), ¥, has infinitely many critical points on NX' Of course, not all of these

A
solutions of (2) provide distinct normal modes.

(1i) From the summary of the Ljusternik-Schnirelmann theory above, and the
introductionary remarks of this proof, the theorem follows as soon as we can find some set
I with ind(I) = N such that
(4.3) Ox(t) < 9c(r/9) .
To that end, let V, and V, be potentials defined by V,(x) = F({x|), ana
Vaix) = P(alxl). Consider for V, and V, respectively, the corresponding functionals
v;, #: and sets N;, N: and the corresponding naturally constrained minimization
problems (2.11), the values of which will be denoted by c1(A) and cl(X) respectively.

Since V1(x) < Vvix) € va(x) on n“, it follows that 0; > 0A > v: and, e.g. from
the characterization (2.12),

c1(X) > c()) > c.(X) .
Because of the special form of the potential Vv, , the function c, is related in a simple
way to the function c,, explicitly
ca(k) = a-zc,(xaz) .

Hence, (4.3) will certainly be satisfied if
(4.4) ¥, (L) < 9c_(A/9) = 9.’2c1u.2/9) .
We shall now construct a set I for which vx(t) < c1(l), which will imply (4.4) since
a ¢3 and c is monotonically decreasing on (0,A*).

To that end, let X € (0,A*) and let i be the solution set of the minimization

1

problem (2.11} for V,. Since V, is rotationally symmetric, any e € st is a

direction of maximal increase for V,, and I 1ise given by (proposition 3.4)

£a{ae:ees™}

’

where a is independent of e, and is, for any e @ s“", a solution of the minimization
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problems (3.,7) for V4. For any ae € L, there exists a unique number p > 0, depending

only on ¢ @ 8871, such that pae @ N,. Then the set
N~1

Ic-{o;ceNx:oes }

is a compact, symmetric subset of Nx and has ind(f) = N. Since 0)‘ < 0;, it follows

that Ox(p;c) < 0:(9;0). Furthermore, because ;0 is a solution of the minimization

problem for V,, the function p+—> 9;(9;0) is maxima) at P = 1, Therefore 1
¥, (0ae) < ¥ (oae) < ¥l(ae) = c, (),

which shows that tx(t) < c1(X). This gives for any X @ (0,A*) the existence of at

least N pairs of critical points of 'A on Nx to which their correspond at least N

\ distinct normal modes with minimal period T = e/,

Since each of these critical points 4y belong to N;, it follows as in the proof of

proposition 2.4, that Ixxl 0% ™ a8 )+ 0, which completes the proof. »
[+
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